High spatial resolution observations in the 1 to 3.5 micron region of the
Galactic Center source known historically as IRS 13 are presented. They include
ground-based adaptive optics images in the H, Kp (2.12/0.4 micron) and L bands,
NICMOS data in filters between 1.1 and 2.2 micron, and integral field
spectroscopic data from BEAR, an Imaging FTS, in the HeI 2.06 micron and the
Brγ line regions. Analysis of all these data provides a completely new
picture of the main component, IRS 13E, which appears as a cluster of seven
individual stars within a projected diameter of ~0.5'' (0.02 pc). The brightest
sources, 13E1, 13E2, 13E3 (a binary), and 13E4, are all massive stars, 13E1 a
blue object, with no detected emission line while 13E2 and 13E4 are high-mass
emission line stars. 13E2 is at the WR stage and 13E4 a massive O-type star.
13E3A and B are extremely red objects, proposed as other examples of dusty WR
stars. All these sources have a common westward proper motion. 13E5, is a red
source similar to 13E3A/B. This concentration of comoving massive hot stars,
IRS 13E, is proposed as the remaining core of a massive star cluster, which
could harbor an intermediate-mass black hole (IMBH) of ~1300 M_sol. This
detection plays in favor of a scenario in which the helium stars and the other
hot stars in the central pc originate from the stripping of a massive cluster
formed several tens of pc from the center. The detection of a discrete X-ray
emission (Baganoff et al. 2003) at the IRS~13 position is examined in this
context.Comment: 14 pages, 6 figures (3 in color), LaTeX2e, accepted in A&