PHYSICAL–BIOLOGICAL COUPLING ON OYSTER REEFS: HOW HABITAT STRUCTURE INFLUENCES INDIVIDUAL PERFORMANCE

Abstract

A large-scale field experiment was conducted to test whether the physical structure of biogenic reef habitat controls physical conditions (hydrodynamics and hydrographics) with subsequent influence on the performance (recruitment, growth, and survival) of a benthic suspension feeder. The experimental system consisted of restored subtidal oyster reefs inhabited by the eastern oyster Crassostrea virginica. To determine whether the size of reefs influences the flow environment and oyster performance, reefs of four heights-tall (2 m), short (1 m), dredged (0.6 m), and low (0.1 m)-were constructed at 3-m water depth in the Neuse River estuary, North Carolina, USA. To test whether oyster performance varies with water depth and hydrographic conditions, tall and short reefs were also constructed at 6-m water depth. Flow speed, sedimentation, temperature, salinity, dissolved oxygen, and the performance of oysters were measured as a function of reef height, position on reef, and water depth over a 10-mo period. Flow speed was found to increase on reefs with reef height and elevation on reefs. Rates of sediment deposition were seasonally highest where flow speed was lowest, at the bases of reefs, and seasonally decreased with increasing water depth. More than 90% of the surface area of low reefs was buried after only 16 mo of exposure in the estuary, indicating that reef height controls habitat quality (and quantity) indirectly through its effect on flow. Short reefs and the bases of tall reefs at 6-m depth were exposed to a total of 26 d of hypoxia/anoxia. No other reef treatment was exposed to >5 d of hypoxia. Physical conditions on experimental reefs had a profound influence on the performance of oysters as the flow environment alone explained 81% of variability in oyster growth and mortality. Recruitment of oysters over a 2-mo period was slightly higher on the front bases than the crests of reefs, but did not vary with reef height or water depth. After 10 mo, the shell growth and condition index of genetically similar, hatchery-raised oysters were greatest on the crests of tall and short reefs, where flow speed and quality of suspended food material were highest, and sediment deposition was lowest. Growth was greatest overall at the crests of tall reefs located at 6-m water depth where flow speed was high, and the numbers of days exposed to hypoxia/anoxia and variation in salinity were lowest. Total percentage mortality of oysters after 10 mo was greater on low reefs located at 3-m depth than on all other reef types and was greater on the bases than crests of tall, short, and dredged reefs. Predation by crabs and fishes accounted for 4-20% of total oyster mortality and showed no pattern across reef treatments. Results of this experiment indicate (1) that the physical structure and location of biogenic habitat controls local physical variables and (2) that, in turn, physical variables, especially flow speed, have a profound influence on the performance of a resident species. Realization that an ecological function of habitat is to indirectly control local population production through physical-biological coupling should improve our ability to conserve, restore, and manage habitat and associated species diversity. Better ecological engineering of restored oyster reef habitat is likely to improve fishery production and help maintain estuarine biodiversity

    Similar works