Condition-dependent expression of trophic polyphenism: effects of individual size and competitive ability

Abstract

Understanding the adaptive significance of alternative phenotypes may require knowing how the internal state of an organism affects the relationship between phenotypic variation and fitness across selective environments. Here, we explore how individual state interacts with environmental variation to affect expression of a trophic polyphenism in larval amphibians. Following the consumption of fairy shrimp, typical omnivorous plains spadefoot toad tadpoles (Spea bombifrons) may express an alternative 'carnivore' phenotype. The carnivore phenotype confers rapid growth and development, but these benefits come at the expense of condition at metamorphosis. Larval habitats vary in longevity, food availability and tadpole morph frequency, each of which potentially affects the relationship between tadpole state (e.g. size) and morph fitness. Hence, we predicted that phenotype expression should depend on both tadpole size and larval environment. We found that small tadpoles were more likely to develop into carnivores than large tadpoles when each was raised in isolation. When tadpoles were raised in pairs, however, relatively smaller tadpoles were less likely to express the carnivore phenotype than larger tadpoles. We present results to support the hypothesis that these contrasting effects of absolute and relative size on carnivore morph expression stem from the effects of tadpole size on the ability to consume fairy shrimp. We conclude that competition for shrimp imposed by larger tadpoles may often inhibit relatively smaller tadpoles from expressing the carnivore phenotype. Thus, we find support for our prediction that morph expression in Spea depends on both an individual's internal state and larval environment. Our understanding of the adaptive significance and, ultimately, the evolution of this and other state-dependent responses may be enhanced by considering how interactions among individuals affect the relationships among fitness, internal state and phenotype expression across different selective environments

    Similar works