Mobility of stretched water

Abstract

To study the mobility of stretched SPC/E water and its dependence on temperature and density, five molecular dynamics computer simulation runs were performed. Three runs were performed at temperature 300 K and densities 1.0, 0.9, and 0.8 g/cc. Two more runs were performed at temperature 273 K and densities 1.0 and 0.9 g/cc. At temperature 300 K, the translational diffusion coefficient of the stretched SPC/E water increased with the stretch, at temperature 273 K the translational diffusion decreased with the stretch. This behavior is correlated with the observed changes in the hydrogen bonding pattern of water.To study the mobility of stretched SPC/E water and its dependence on temperature and density, five molecular dynamics computer simulation runs were performed. Three runs were performed at temperature 300 K and densities 1.0, 0.9, and 0.8 g/cc. Two more runs were performed at temperature 273 K and densities 1.0 and 0.9 g/cc. At temperature 300 K, the translational diffusion coefficient of the stretched SPC/E water increased with the stretch, at temperature 273 K the translational diffusion decreased with the stretch. This behavior is correlated with the observed changes in the hydrogen bonding pattern of water

    Similar works