Scalability of an Unstructured Grid Continuous Galerkin Based Hurricane Storm Surge Model

Abstract

This paper evaluates the parallel performance and scalability of an unstructured grid Shallow Water Equation (SWE) hurricane storm surge model. We use the ADCIRC model, which is based on the generalized wave continuity equation continuous Galerkin method, within a parallel computational framework based on domain decomposition and the MPI (Message Passing Interface) library. We measure the performance of the model run implicitly and explicitly on various grids. We analyze the performance as well as accurracy with various spatial and temporal discretizations. We improve the output writing performance by introducing sets of dedicated writer cores. Performance is measured on the Texas Advanced Computing Center Ranger machine. A high resolution 9,314,706 finite element node grid with 1s time steps can complete a day of real time hurricane storm surge simulation in less than 20 min of computer wall clock time, using 16,384 cores with sets of dedicated writer cores

    Similar works