The Role of p70 S6K in Hepatic Stellate Cell Collagen Gene Expression and Cell Proliferation

Abstract

During fibrosis the hepatic stellate cell (HSC) undergoes a complex activation process characterized by increased proliferation and extracellular matrix deposition. The 70-kDa ribosomal S6 kinase (p70S6K) is activated by mitogens, growth factors, and hormones in a phosphatidylinositol 3-kinase-dependent manner. p70S6K regulates protein synthesis, proliferation, and cell cycle control. Because these processes are involved in HSC activation, we investigated the role of p70S6K in HSC proliferation, cell cycle control, and type I collagen expression. Platelet-derived growth factor (PDGF) stimulated p70S6K phosphorylation, which was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Rapamycin blocked phosphorylation of p70S6K but had no affect on PDGF-induced Akt phosphorylation, positioning p70S6K downstream of Akt. Transforming growth factor-beta, which inhibits HSC proliferation, did not affect PDGF-induced p70S6K phosphorylation. Rapamycin treatment did not affect alpha1(I) collagen mRNA but reduced type I collagen protein secretion. Expression of smooth muscle alpha-actin was not affected by rapamycin treatment, indicating that HSC activation was not altered. Rapamycin inhibited serum-induced DNA synthesis approximately 2-fold. Moreover, rapamycin decreased expression of cyclins D1, D3, and E but not cyclin D2, Rb-Ser780, and Rb-Ser795. Together, p70S6K plays a crucial role in HSC proliferation, collagen expression, and cell cycle control, thus representing a potential therapeutic target for liver fibrosis

    Similar works