Objective: The anti-cancer anthracycline drug Doxorubicin (Dox) causes cardiotoxicity. We investigated the role of protease-activated receptor 1 (PAR-1) in Dox-induced cardiotoxicity. Methods and results: In vitro experiments revealed that PAR-1 enhanced Dox-induced mitochondrial dysfunction, reactive oxygen species and cell death of cardiac myocytes and cardiac fibroblasts. The contribution of PAR-1 to Dox-induced cardiotoxicity was investigated by subjecting PAR-1−/− mice and PAR-1+/+ mice to acute and chronic exposure to Dox. Heart function was measured by echocardiography. PAR-1−/− mice exhibited significant less cardiac injury and dysfunction compared to PAR-1+/+ mice after acute and chronic Dox administration. PAR-1−/− mice had reduced levels of nitrotyrosine, apoptosis and inflammation in their heart compared to PAR-1+/+ mice. Furthermore, inhibition of PAR-1 in wild-type mice with vorapaxar significantly reduced the acute Dox-induced cardiotoxicity. Conclusion: Our results indicate that activation of PAR-1 contributes to Dox-induced cardiotoxicity. Inhibition of PAR-1 may be a new approach to reduce Dox-induced cardiotoxicity in cancer patients