The Septate Junction Protein Caspr Is Required for Structural Support and Retention of KCNQ4 at Calyceal Synapses of Vestibular Hair Cells

Abstract

The afferent innervation contacting the type I hair cells of the vestibular sensory epithelia form distinct calyceal synapses. The apposed pre- and post-synaptic membranes at this large area of synaptic contact are kept at a remarkably regular distance. Here, we show by freeze-fracture electron microscopy that a patterned alignment of proteins at the calyceal membrane resembles a type of intercellular junction that is rare in vertebrates, the septate junction (SJ). We found that a core molecular component of SJs, Caspr, colocalizes with the K+ channel KCNQ4 at the post-synaptic membranes of these calyceal synapses. Immunolabeling and ultrastructural analyses of Caspr knockout mice reveal that, in the absence of Caspr, the separation between the membranes of the hair cells and the afferent neurons is conspicuously irregular and often increased by an order of magnitude. In these mutants, KCNQ4 fails to cluster at the post-synaptic membrane and appears diffused along the entire calyceal membrane. Our results indicate that a septate-like junction provides structural support to calyceal synaptic contact with the vestibular hair cell, and that Caspr is required for the recruitment or retention of KCNQ4 at these synapses

    Similar works