Mesenchymal Stem Cells Expressing Insulin-like Growth Factor-I (MSCIGF) Promote Fracture Healing and Restore New Bone Formation in Irs1 Knockout Mice: Analyses of MSCIGF Autocrine and Paracrine Regenerative Effects

Abstract

Failures of fracture repair (non-unions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe and feasible. The contributions of MSC to the reparative process can occur through autocrine as well as paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSC expressing insulin-like growth factor-I (MSCIGF), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and non-unions. MSCIGF or traceable MSCIGF-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knock-out (Irs1−/−) mice with a stabilized tibia fracture. Healing was assed using biomechanical testing, micro-computed-tomography (µCT) and histological analyses. We found that systemically transplanted MSCIGF through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSCIGF to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced induced osteoglastogenesis in MSC was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1−/− mice as a non-union fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap; a callus that basically absent in Irs1−/− left untransplanted or transplanted with MSC. We provided evidence of effects and mechanisms for transplanted MSCIGF in fracture repair and potentially to treat non-unions

    Similar works