Discovery of a Viral NLR Homolog that Inhibits the Inflammasome

Abstract

The nucleotide-binding and oligomerization, leucine-rich repeat (NLR) family of proteins sense microbial infections and activate the inflammasome, a multi-protein complex that promotes microbial clearance. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. We report that KSHV Orf63 is a viral homolog of human NLRP1. Orf63 blocked NLRP1-dependent innate immune responses, including caspase-1 activation and processing of interleukin (IL)-1β and IL-18. KSHV Orf63 interacted with NLRP1, NLRP3, and NOD2. Inhibition of Orf63 expression resulted in increased expression of IL-1β during the KSHV lifecycle. Furthermore, inhibition of NLRP1 was necessary for efficient reactivation and generation of progeny virus. The viral homolog subverts the function of cellular NLRs, which suggests that modulation of NLR-mediated innate immunity is important for the life-long persistence of herpesviruses

    Similar works