We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number of in-frame stop codons within a window, the adjacency between peptides, and duplicate peptide matches. Statistical significance of matching regions is assessed by comparing their scores to scores from windows matching randomly generated mass data. Tests with samples from Saccharomyces cerevisiae mitochondria and Escherichia coli have demonstrated the ability to produce statistically significant identifications, agreeing with two commonly used programs, peptident and mascot, in 86% of samples analyzed. This genome fingerprint scanning method has the potential to aid in genome annotation, identify proteins for which annotation is incorrect or missing, and handle cases where sequencing errors have caused framing mistakes in the databases. It might also aid in the identification of proteins in which recoding events such as frameshifting or stop-codon read-through have occurred, elucidating alternative translation mechanisms. The prototype is implemented as a client/server pair, allowing the distribution, among a set of cluster nodes, of a single or multiple genomes for concurrent analysis