Ordered and disordered phospholipid domains coexist in membranes containing the calcium pump protein of sarcoplasmic reticulum.

Abstract

Data are presented that lead to an alternative model for the organization and molecular dynamics of lipid molecules near the Ca2+-stimulated, Mg2+-dependent adenosinetriphosphatase (Ca2+-ATPase; ATP phosphohydrolase, EC 3.6.1.3) of sarcoplasmic reticulum. Measurements of the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in progressively delipidated sarcoplasmic reticulum membranes have been quantitatively interpreted in terms of a layer of lipid of high anisotropy (the lipid annulus) coexisting with lipid layers of very low anisotropy. In addition, the Ca2+-ATPase has been reconstituted into pure 1,2-dipentadecanoyl 3-sn-phosphatidylcholine membranes over a range of lipid-to-protein ratios. High-sensitivity differential scanning calorimetry has demonstrated that roughly 30 lipid molecules per Ca2+-ATPase molecule (annular lipids) fail to undergo a calorimetrically detectable phase transition in the temperature range 4-44 degrees C. Roughly 100 lipid molecules beyond the annulus undergo a detectable phase transition at a temperature below the phase transition of pure lipid and with an enthalpy change [4.2 kcal/mol (1 kcal = 4.18 kJ)] about half that observed for pure lipid vesicles (7.7-7.8 kcal/mol). We propose that both the fluorometric and calorimetric data are consistent with a model in which a motionally inhibited lipid annulus is surrounded by a more extensive region of disrupted lipid packing order, which we have called the secondary lipid domain

    Similar works