RALA and RALBP1 regulate mitochondrial fission at mitosis

Abstract

Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission1. Equal distribution of mitochondria to daughter cells during mitosis requires fission2. Mitotic mitochondrial fission depends upon both the relocalization of large GTPase Drp1 to the outer mitochondrial membrane and phosphorylation of S616 on Drp1 by the mitotic kinase cyclin B/Cdk12. We now report that these processes are mediated by the small Ras-like GTPase RalA and its effector RalBP1 (RLIP76/RLIP1/RIP1)3,4. Specifically, the mitotic kinase Aurora A phosphorylates S194 of RalA, relocalizing it to the mitochondria, where it concentrates RalBP1 and Drp1. Furthermore, RalBP1 associates with cyclin B/Cdk1 kinase activity to foster phosphorylation of Drp1 on S616. Disrupting either RalA or RalBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B/Cdk1 converge upon RalA and RalBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function

    Similar works