Evolution and Virulence Contributions of the Autotransporter Proteins YapJ and YapK of Yersinia pestis CO92 and Their Homologs in Y. pseudotuberculosis IP32953

Abstract

ABSTRACT Yersinia pestis , the causative agent of plague, evolved from the gastrointestinal pathogen Yersinia pseudotuberculosis . Both species have numerous type Va autotransporters, most of which appear to be highly conserved. In Y. pestis CO92, the autotransporter genes yapK and yapJ share a high level of sequence identity. By comparing yapK and yapJ to three homologous genes in Y. pseudotuberculosis IP32953 (YPTB0365, YPTB3285, and YPTB3286), we show that yapK is conserved in Y. pseudotuberculosis , while yapJ is unique to Y. pestis . All of these autotransporters exhibit >96% identity in the C terminus of the protein and identities ranging from 58 to 72% in their N termini. By extending this analysis to include homologous sequences from numerous Y. pestis and Y. pseudotuberculosis strains, we determined that these autotransporters cluster into a YapK (YPTB3285) class and a YapJ (YPTB3286) class. The YPTB3286-like gene of most Y. pestis strains appears to be inactivated, perhaps in favor of maintaining yapJ . Since autotransporters are important for virulence in many bacterial pathogens, including Y. pestis , any change in autotransporter content should be considered for its impact on virulence. Using established mouse models of Y. pestis infection, we demonstrated that despite the high level of sequence identity, yapK is distinct from yapJ in its contribution to disseminated Y. pestis infection. In addition, a mutant lacking both of these genes exhibits an additive attenuation, suggesting nonredundant roles for yapJ and yapK in systemic Y. pestis infection. However, the deletion of the homologous genes in Y. pseudotuberculosis does not seem to impact the virulence of this organism in orogastric or systemic infection models

    Similar works