Search for α3β2/3γ2 subtype selective ligands that are stable on human liver microsomes

Abstract

Selective modulation of specific benzodiazepine receptor (BzR) gamma amino butyric acid-A (GABAA) receptor ion channels has been identified as an important method for separating out the variety of pharmacological effects elicited by BzR-related drugs. Importantly, it has been demonstrated that both α2β(2/3)γ2 (α2BzR) and α3BzR (and/or α2/α3) BzR subtype selective ligands exhibit anxiolytic effects with little or no sedation. Previously we have identified several such ligands; however, three of our parent ligands exhibited significant metabolic liability in rodents in the form of a labile ester group. Here eight analogs are reported which were designed to circumvent this liability by utilizing a rational replacement of the ester moiety based on medicinal chemistry precedents. In a metabolic stability study using human liver microsomes, four compounds were found to undergo slower metabolic transformation, as compared to their corresponding ester analogs. These compounds were also evaluated in in vitro binding as well as efficacy assays. Additionally, bioisostere 11 was evaluated in a rodent model of anxiety. It exhibited anxiolytic activity at doses of 10 and 100 mg/kg and was devoid of sedative properties

    Similar works