Abstract

Clinical data have demonstrated rapid and sustained antidepressant effects of ketamine, a noncompetitive NMDAR (N-methyl-daspartate receptor) antagonist. Recently, Zanos et al.2 claimed that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is essential for the antidepressant effects of ketamine in mice in an NMDAR-independent manner, although no alternative mechanism was proposed, beyond unspecific activation of AMPAR (α -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor). Here we report that (2R,6R)-HNK blocks synaptic NMDARs in a similar manner to its parent compound, and we show that the effects of (2R,6R)-HNK on intracellular signalling are coupled to NMDAR inhibition. These data demonstrate that (2R,6R)-HNK inhibits synaptic NMDARs and subsequently elicits the same signal transduction pathway previously associated with NMDAR inhibition by ketamine

    Similar works