CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter
Authors
J.J. Arnold
C.E. Cameron
+9 more
M. Kastner
M.F. Lodeiro
L.J., III Maher
D. Murugesapillai
G.V. Oliver
S. Prabhakar
A. Uchida
Y. Wang
M.C. Williams
Publication date
1 January 2017
Publisher
eLife Sciences Publications Ltd
Doi
Cite
Abstract
Human mtDNA contains three promoters, suggesting a need for differential expression of the mitochondrial genome. Studies of mitochondrial transcription have used a reductionist approach, perhaps masking differential regulation. Here we evaluate transcription from light-strand (LSP) and heavy-strand (HSP1) promoters using templates that mimic their natural context. These studies reveal sequences upstream, hypervariable in the human population (HVR3), and downstream of the HSP1 transcription start site required for maximal yield. The carboxyterminal tail of TFAM is essential for activation of HSP1 but not LSP. Images of the template obtained by atomic force microscopy show that TFAM creates loops in a discrete region, the formation of which correlates with activation of HSP1; looping is lost in tail-deleted TFAM. Identification of HVR3 as a transcriptional regulatory element may contribute to between-individual variability in mitochondrial gene expression. The unique requirement of HSP1 for the TFAM tail may enable its regulation by post-translational modifications. © Uchida et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Carolina Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
cdr.lib.unc.edu:4m90f156m
Last time updated on 24/11/2020