Scalable generation of large-scale unstructured meshes by a novel domain decomposition approach

Abstract

© 2018 Elsevier Ltd A parallel algorithm is proposed for scalable generation of large-scale tetrahedral meshes. The key innovation is the use of a mesh-simplification based domain decomposition approach. This approach works on a background mesh with both its surface and its interior elements much larger than the final elements desired, and decomposes the domain into subdomains containing no undesirable geometric features in the inter-domain interfaces. In this way, the most time-consuming part of domain decomposition can be efficiently parallelized, and other sequential parts consume reasonably limited computing time since they treat a very coarse background mesh. Meanwhile, the subsequent parallel procedures of mesh generation and improvement are most efficient because they can treat individual subdomains without compromising element quality. Compared with published state-of-the-art parallel algorithms, the developed parallel algorithm can reduce the clock time required by the creation of one billion elements on 512 computer cores from roughly half an hour to less than 4 minutes

    Similar works