Abstract

The beam-driven FLASHForward experiment 1 (X-1) aims at the generation of high-brightness electron bunches for photon science applications in several centimeters of plasma, with the plasma acting both as a cathode and accelerator.The 1 GeV electron-bunch with a peak current of 2.5 kA and a synchronized TW-laser system makes FLASHForward a unique facility[1] to study controlled electron-injection into plasma wakes.With density downramp injection, witness bunches of ~1 kA peak current at emittances well below 1 µm are achievable[2]. The sharp plasma density gradients are produced by means of controlled gas flow[3] or by localized laser ionization transverse to the electron-beam orbit[4]. Precise laser-to-electron-beam synchronization enables controlled injection as e.g. the Trojan Horse scheme[5], which is predicted to support sub-0.1-µm-emittance witness bunches.experimental installation status, planning, and prospects of the FLASHForward X-1 experiments are presented

    Similar works

    Full text

    thumbnail-image

    Available Versions