research

The essential signature of a massive starburst in a distant galaxy

Abstract

Observations of carbon monoxide (CO) emission in high redshift (z>2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus (AGN) powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the AGN, or from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds; gas densities are n(H2)>105 cm-3 in the cores. Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations is at a much lower density. In galaxies in the local Universe, the HCN(J=1-0) line is an effective tracer of the high-density molecular gas. Here we report observations of HCN emission in the early Universe from the infrared luminous 'Cloverleaf' quasar (at a redshift z=2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst that contributes, together with the AGN it harbors, to its high infrared luminosity.Comment: PDF pape

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019