Enhanced electrostatic force microscopy reveals higher-order DNA looping mediated by the telomeric protein TRF2

Abstract

Shelterin protein TRF2 modulates telomere structures by promoting dsDNA compaction and T-loop formation. Advancement of our understanding of the mechanism underlying TRF2-mediated DNA compaction requires additional information regarding DNA paths in TRF2-DNA complexes. To uncover the location of DNA inside protein-DNA complexes, we recently developed the Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy (DREEM) imaging technique. DREEM imaging shows that in contrast to chromatin with DNA wrapping around histones, large TRF2-DNA complexes (with volumes larger than TRF2 tetramers) compact DNA inside TRF2 with portions of folded DNA appearing at the edge of these complexes. Supporting coarse-grained molecular dynamics simulations uncover the structural requirement and sequential steps during TRF2-mediated DNA compaction and result in folded DNA structures with protruding DNA loops as seen in DREEM imaging. Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways

    Similar works