The structural evolution of substructure in cold dark matter (CDM) models is
investigated combining ``low-resolution'' satellites from cosmological N-body
simulations of parent halos with N=10^7 particles with high-resolution
individual subhalos orbiting within a static host potential. We show that, as a
result of mass loss, convergence in the central density profiles requires the
initial satellites to be resolved with N=10^7 particles and parsec-scale force
resolution. We find that the density profiles of substructure halos can be well
fitted with a power-law central slope that is unmodified by tidal forces even
after the tidal stripping of over 99% of the initial mass and an exponential
cutoff in the outer parts. The solution to the missing-satellites problem
advocated by Stoehr et al. in 2002 relied on the flattening of the dark matter
(DM) halo central density cusps by gravitational tides, enabling the observed
satellites to be embedded within DM halos with maximum circular velocities as
large as 60 km/s. In contrast, our results suggest that tidal interactions do
not provide the mechanism for associating the dwarf spheroidal satellites
(dSphs) of the Milky Way with the most massive substructure halos expected in a
CDM universe. We compare the predicted velocity dispersion profiles of Fornax
and Draco to observations, assuming that they are embedded in CDM halos. Models
with isotropic and tangentially anisotropic velocity distributions for the
stellar component fit the data only if the surrounding DM halos have maximum
circular velocities in the range 20-35 km/s. If the dSphs are embedded within
halos this large then the overabundance of satellites within the concordance
LCDM cosmological model is significantly alleviated, but this still does not
provide the entire solution.Comment: Accepted for publication in ApJ, 17 pages, 9 figures, LaTeX (uses
emulateapj5.sty