We investigate the red supergiant (RSG) content of the SMC and LMC using
multi-object spectroscopy on a sample of red stars previously identified by
{\it BVR} CCD photometry. We obtained high accuracy (<1 km s−1) radial
velocities for 118 red stars seen towards the SMC and 167 red stars seen
towards the LMC, confirming most of these (89% and 95%, respectively) as red
supergiants (RSGs). Spectral types were also determined for most of these RSGs.
We find that the distribution of spectral types is skewed towards earlier type
at lower metallicities: the average (median) spectral type is K5-7 I in the
SMC, M1 I in the LMC, and M2 I in the Milky Way. We argue that RSGs in the
Magellanic Clouds are 100deg (LMC) and 300deg (SMC) cooler than Galactic RSGs
of the same spectral type. We compare the distribution of RSGs in the H-R
diagram to that of various stellar evolutionary models; we find that none of
the models produce RSGs as cool and luminous as what is actually observed. In
all of our H-R diagrams, however, there is an elegant sequence of decreasing
effective temperatures with increasing luminosities; explaining this will be an
important test of future stellar evolutionary models.Comment: Version with eps figures embedded can be obtained from
ftp://ftp.lowell.edu/pub/massey/rsgs.ps.gz Accepted by the Astronomical
Journa