The low quadrupole of the cosmic microwave background (CMB), measured by COBE
and confirmed by WMAP, has generated much discussion recently. We point out
that the well-known correlation between temperature and polarization
anisotropies of the CMB further constrains the low multipole anisotropy data.
This correlation originates from the fact that the low-multipole polarization
signal is sourced by the CMB quadrupole as seen by free electrons during the
relatively recent cosmic history. Consequently, the large-angle temperature
anisotropy data make restrictive predictions for the large-angle polarization
anisotropy, which depend primarily on the optical depth for electron scattering
after cosmological recombination, tau. We show that if current cosmological
models for the generation of large angle anisotropy are correct and the
COBE/WMAP data are not significantly contaminated by non-CMB signals, then the
observed C_te amplitude on the largest scales is discrepant at the 99.8% level
with the observed C_tt for the concordance LCDM model with tau=0.10. Using
tau=0.17, the preferred WMAP model-independent value, the discrepancy is at the
level of 98.5%.Comment: 6 pages, 6 figures, ApJ in pres