This thesis is focused on the automated segmentation of the brain structures in magnetic resonance images, applied to multiple sclerosis patients. This disease is characterized by the presence of lesions, which affect the segmentation result of commonly used automatic methods. We propose a new correspondence search model able to minimize this problem and extend the theory of two remarkable label fusion strategies of the literature, i.e. Non-local Spatial STAPLE and Joint Label Fusion, in order to integrate this model into their corresponding estimation algorithms. Furthermore, with the aim of providing fully automated algorithms, a whole automated pipeline is presented. Finally, a second extension of the theory to enable the integration of manual and automatic edits into the segmentation estimation of both strategies is also proposed. The analysis of the results obtained points out a performance improvement on the lesion areas, which is also reflected on the whole brain segmentation performanceAquesta tesi se centra en la segmentació automàtica de les estructures cerebrals en imatges de ressonància magnètica, aplicada a pacients d’esclerosi múltiple. Aquesta malaltia es caracteritza per la presència de lesions, que afecten els resultats de segmentació dels mètodes automàtics tradicionals. Per aquest motiu proposem un nou model de cerca de correspondències capaç de minimitzar aquest problema i estenem la teoria de dues estratègies notables de la literatura, Non-local Spatial STAPLE i Joint Label Fusion, per integrar aquest model en els seus corresponents algoritmes d’estimació. Amb l’objectiu de proporcionar algoritmes totalment automatitzats, es presenta una pipeline completa. Finalment, també es proposa una segona extensió de la teoria per permetre la integració d’anotacions manuals i automàtiques en les dues estratègies. L’anàlisi dels resultats obtinguts demostra una millora en el rendiment dels algorismes de segmentació en les àrees de lesió, que també es veu reflectida en la segmentació de tot el cervel