Numerical investigation of unsteady MHD flow and radiation heat transfer past a stretching surface in porous media with viscous dissipation and heat generation/absorption
71-78Viscous dissipation and radiation effects on unsteady flow of laminar incompressible viscous electrically conducting fluid through stretching surface in a porous media with magnetic field and heat generation/absorption have been investigated. Taking suitable similarity variables, the governing boundary layer equations are converted into a set of ordinary differential equations and solved numerically by Runge-Kutta fourth order method along with shooting technique. The effects of the various physical dimensionless parameters such as unsteadiness parameter, permeability parameter, magnetic parameter, radiation parameter, Prandtl number, heat generation/absorption parameters and Eckert number for velocity and temperature distributions have been analyzed in detail through graphical representations. Further skin friction coefficient and Nusselt number at the surface are numerated and compared with previous researchers