Modelling a real rockslide as a static-dynamic transition using a material instability criterion

Abstract

747-757Failures at geological discontinuities often play a dominant role in the prediction of rockslides. In this study, a second order work criterion was used to analyze this type of problem by its constitutive instabilities, as it can expound all physical instabilities by divergence, except flutter instabilities. Derived from vanishing of the second order work, a matrix analysis focusing on the instability of geological discontinuities in two dimensions was performed. A real rockslide was simulated in a 2-D framework, and the second order work criterion was used to predict the occurrence of the rockslide. The numerical results were compared to monitoring data. Rockslides could be considered as processes involving a transition from a static loading to a dynamic response including a sudden burst of kinetic energy. Furthermore, a relationship existed between the second order work and second order kinetic energy. Hence, kinetic energy estimation was performed using two numerical approaches derived from this relationship and compared

    Similar works