We evaluate the intrinsic three dimensional shapes of molecular cores, by
analysing their projected shapes. We use the recent catalogue of molecular line
observations of Jijina et al. and model the data by the method originally
devised for elliptical galaxies. Our analysis broadly supports the conclusion
of Jones et al. that molecular cores are better represented by triaxial
intrinsic shapes (ellipsoids) than biaxial intrinsic shapes (spheroids).
However, we find that the best fit to all of the data is obtained with more
extreme axial ratios (1:0.8:0.4) than those derived by Jones et al.
More surprisingly, we find that starless cores have more extreme axial ratios
than protostellar cores -- starless cores appear more `flattened'. This is the
opposite of what would be expected from modeling the freefall collapse of
triaxial ellipsoids. The collapse of starless cores would be expected to
proceed most swiftly along the shortest axis - as has been predicted by every
modeller since Zel'dovich - which should produce more flattened cores around
protostars, the opposite of what is seen.Comment: 7 pages, 3 figure