<span style="font-size:14.0pt;line-height: 115%;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; color:black;mso-ansi-language:EN-IN;mso-fareast-language:EN-IN;mso-bidi-language: HI" lang="EN-IN">Biosorption and elution of chromium from immobilized <i>Bacillus coagulans </i>biomass</span>

Abstract

986-990<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN">Bacillus coagu1ans, <span style="font-size:14.0pt; line-height:115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN">a tannery wastewater isolate, previously shown to bind dissolved Cr(VI), retained its ability to biosorb Cr(VI) in different matrices. Polymeric materials like agar, agarose, calcium alginate and polyacrylamide were screened. Agarose emerged as the suitable candidate for biomass immobilization mainly due to its higher stability and integrity in acidic pH. Aptness of agarose as the matrix for B. coagulans biomass was revealed during Cr(VI) biosorption from natural wastewater.</span

    Similar works

    Full text

    thumbnail-image

    Available Versions