Strong gravitational lensing is a useful probe of both the intrinsic
properties of the lenses and the cosmological parameters of the universe. The
large number of model parameters and small sample of observed lens systems,
however, have made it difficult to obtain useful constraints on more than a few
parameters from lensing statistics. Here we examine how the recent WMAP
measurements help improve the constraining power of statistics from the radio
lensing survey JVAS/CLASS. We find that the absence of theta>3'' lenses in
CLASS places an upper bound of beta<1.25 (1.60) at 68% (95%) CL on the inner
density profile, rho \propto r^{-beta}, of cluster-sized halos. Furthermore,
the favored power spectrum normalization is sigma_8 >= 0.7 (95% CL). We discuss
two possibilities for stronger future constraints: a positive detection of at
least one large-separation system, and next-generation radio surveys such as
LOFAR.Comment: Scatter in concentration included; virial mass used consistently; new
Fig 3. Final version published in ApJ