research

CRASH: a Radiative Transfer Scheme

Abstract

We present a largely improved version of CRASH, a 3-D radiative transfer code that treats the effects of ionizing radiation propagating through a given inhomogeneous H/He cosmological density field, on the physical conditions of the gas. The code, based on a Monte Carlo technique, self-consistently calculates the time evolution of gas temperature and ionization fractions due to an arbitrary number of point/extended sources and/or diffuse background radiation with given spectra. In addition, the effects of diffuse ionizing radiation following recombinations of ionized atoms have been included. After a complete description of the numerical scheme, to demonstrate the performances, accuracy, convergency and robustness of the code we present four different test cases designed to investigate specific aspects of radiative transfer: (i) pure hydrogen isothermal Stromgren sphere; (ii) realistic Stromgren spheres; (iii) multiple overlapping point sources, and (iv) shadowing of background radiation by an intervening optically thick layer. When possible, detailed quantitative comparison of the results against either analytical solutions or 1-D standard photoionization codes has been made showing a good level of agreement. For more complicated tests the code yields physically plausible results, which could be eventually checked only by comparison with other similar codes. Finally, we briefly discuss future possible developments and cosmological applications of the code.Comment: 17 pages, 14 figures, accepted for pubblication in MNRAS, high res figures available at http://www.arcetri.astro.it/science/cosmology/IGM/radtrans.htm

    Similar works