Self-assembled nanomaterials: an extended structural characterization of lipid nanoparticles and guanosine-based hydrogels

Abstract

Questa tesi di dottorato riguarda la caratterizzazione biofisica e strutturale di due diversi tipi di nanomateriali, uno basato su molecole lipidiche e l'altro su derivati degli acidi nucleici, che hanno in comune il meccanismo alla base della loro formazione, e cioè l'autoassemblaggio. La tesi è strutturata in 9 capitoli. Il capitolo 1 fornisce una breve introduzione sui sistemi lipidici utilizzati nel Drug Delivery. Tale introduzione è seguita da una discussione sui principi di base del polimorfismo lipidico in acqua e sull'utilizzo della tecnica di diffrazione a raggi X (XRD) per l'identificazione delle differenti strutture. Nel capitolo 2 sono riportati e ampiamente discussi i principali risultati (pubblicati e non) relativi alle nanoparticelle lipidiche studiate in questa tesi, nell'ambito di una collaborazione con il Dipartimento di Scienze della Vita e Biotecnologie dell'Università di Ferrara. I capitoli da 3 a 6 sono focalizzati sui risultati ottenuti dallo studio di idrogel basati sulla guanosina. Dopo aver introdotto gli acidi nucleici, nel capitolo 3 vengono discussi i principi base dell'autoassemblaggio della guanosina, il comportamento liotropico che caratterizza i quadruplessi di guanosina in acqua e l'identificazione delle differenti mesofasi mediante XRD. Successivamente, il capitolo 4 introduce specificatamente gli idrogel a base di guanosina, il capitolo 5 riguarda l'analisi dei profili XRD osservati nelle differenti condizioni sperimentali e le ipotesi sulla struttura dei gel e infine il capitolo 6 presenta una loro possibile applicazione tecnologica. Al fine di spiegare il meccanismo di gelazione, e considerando l'effetto che le differenti interazioni possono avere su questi straordinari sistemi, il capitolo 7 descrive i primi risultati ottenuti mediante la tecnica dello stress osmotico su due differenti campioni di guanosina. Nel capitolo 8 vengono infine riportate le considerazioni finali del mio lavoro e le direzioni future in cui muoversi. Il capitolo 9 è dedicato alle tecniche sperimentali e procedure utilizzate durante il mio dottorato.This doctoral thesis concerns an extended biophysical and structural characterization of two different kinds of nanomaterials, the one based on lipids and the second on nucleic acid derivatives. Both systems share the same basic mechanism of formation, e.g., the self-assembly. This dissertation has been structured in 9 Chapters. Chapter 1 provides a brief introduction to Drug Delivery Systems and is followed by a discussion on the basic principles of lipid polymorphism in water and a short presentation about the use of X-ray diffraction techniques (XRD) for lipid phase identification. In Chapter 2, main results (published and not) obtained on lipid nanoparticles inside a collaboration with the Department of Life Sciences and Biotechnologies of the University of Ferrara are reported and widely discussed. From Chapter 3 to 6, results obtained on guanosine-based hydrogels are reported in detail. After a very short introduction to the extraordinary world of nucleic acid polymorphism, the basic principles of guanosine self-assembly and the lyotropic liquid-crystalline behavior are described in Chapter 3, which also reports a short introduction to the use of XRD in the identification of the different mesophases formed by guanosine quadruplexes in water. Chapter 4 summarizes the physical and biological properties of guanosine-based hydrogels, Chapter 5 describes the analysis of the XRD profiles observed in the different conditions and the possible structural models for the prepared hydrogel and finally, in Chapter 6, a possible technological application of such hydrogels is presented. In order to derive information on the gelation mechanism and on the origin of the possible interactions, Chapter 7 reports results obtained on two different guanosine systems using the osmotic stress. In Chapter 8, final considerations and a discussion on future ongoing conclude the dissertation. Note that Chapter 9 is dedicated to the experimental techniques and procedures used during my PhD

    Similar works