A new hybrid soft-sensing approach (based on IR Sensor data) for the assessment of the properties characterizing the dynamic thermal behaviour of a building component

Abstract

Uno degli aspetti principali in termini di risparmio energetico è legato alle performance energetiche dei component da edilizia. Per questa ragione, in letteratura è possibile trovare sempre più lavori riguardanti la valutazione delle proprietà termiche dei component da edilizia (conducibilità termica, trasmittanza termica, sfasamento). Molti lavori e standard descrivono la valutazione delle proprietà termiche in condizioni di regime stazionario ma in molti casi, ad esempio in applicazioni in opera, queste condizioni sono estramamente complicate da riprodurre. Per questa ragione, la ricerca si è focalizzata sul comportamento termico dinamico dei materiali che consente di caratterizzare le proprietà termiche dinamiche in condizioni più facilmente riproducibili. Le metodologie attuali per la valutazione del comportamento termico dinamico di un material presentano diversi problemi e difficoltà:  Sensori a contatto: gli standard attuali prevedono una valutazione puntuale che non è spesso rappresentativa del comportamento termico dinamico dell’intero muro;  Condizioni ambientali: uno degli aspetti più importati in termini di incertezza di misura è rappresenato dale condizioni ambientali che condizionano i dati misurati. Infatti, l’elevatà sensibilità dei sensori (termoflussimetro e termocoppie) rende quest’aspetto critic durante una campagna di test.  Durata del test: gli standard attuali richiedono almeno 72h di monnitoraggio per test sul campo. In molte condizioni non è possibile avere durate così eccessive. Per accrescere lo stato dell’arte è presentata una tecnica innovativa, basata su un approccio Soft-Sensing che combina dati misurati con un modello predittivo, con lo scopo di implementare le attuali metodologie di misura in termini di accuratezza, consume di tempo e valutazione del reale comportamento dinamico di un componente. Inoltre, la tecnica proposta è basata sull’uso di un sensore ad infrarossi che porta I seguenti vantaggi:  Sensori non a contatto rispetto agli attuali standard basati sull’uso di termocoppie e termoflussimetro;  Valurtazione “full-field” dell’intera scena inquadrata rispetto ad una valutazione puntuale ottenuta con dei sensori a contatto. I risultati ottenuti mostrano una differenza tra il valore dichiarato di trasmittanza termica e quello misurato che raggiunge al massimo il 5% nell condizioni di prova più sfavorevoli (cambiamenti di velocità dell’aria e sorgenti irradianti durante il test) ed una riduzione dei tempi nell’ordine dello sfasamento termico del materiale. Questo risultato accresce lo stato dell’arte che invece dichiarano un valore di incertezza di almeno l’8% per il test termoflussimetrico con una durata di almeno 72h.One of the main aspects in terms of energy-saving is related to the thermal performances of the building component. For this reason, more and more works can be found in the literature concerning the thermal properties assessment of the building components (conductivity, thermal transmittance, phase shift). Many works and standards describes the steady-state condition for the thermal properties evaluation but in more condition, like in-situ application, these conditions are very difficult to reproduce. For this reason, the research has been focused on the dynamic thermal behavior of a material that allows to characterize the dynamical thermal properties in more reproducible conditions. The actual methodologies for the dynamic thermal behavior assessment present many problems and difficulties:  Contact sensors: the actual standards provide a single point evaluation which is not representative of the wall thermal dynamic behavior;  Environmental conditions: one of the main aspect in terms of measurement uncertainty is represented by the environmental conditions which affect the measured data. In fact, the high sensitivity of the sensors (heat flow meter and thermocouples) makes this aspect critical in a test campaign;  Time consuming: the actual standards require at least 72h of monitoring for in-situ test. In many conditions there is not the possibility to have a so long time monitoring. In order to enhance the state-of-the-art an innovative approach is presented, based on Soft-Sensing approach that combines the measured data with a predictive model, with the ambition to improve the actual measurement methodologies in terms of accuracy, time-consuming and evaluation of the real building component behavior. Furthermore, the data are acquired with an IR sensor that gives the following advantages:  Non-contact sensor in respect to the actual standards based on the use of thermocouples and heat flow meters;  Full-field evaluation in respect to a single point evaluation obtained with a contact sensor; The results obtained show a deviation between the declared value of thermal transmittance of the building component analyzed up to 5% in more unfavorable conditions (air velocity changes and radiative external source) and a time-consuming reduction related to the thermal phase shift of the material. This result enhances the actual standard procedures that have a declared uncertainty value at least of ±8 % for the heat flow meter method with a time required for the test at least of 72h

    Similar works