We present results of mapping observations of the DNC, HN^13C, and H^13CO^+
lines (J=1-0) toward 4 nearby dark cloud cores, TMC-1, L1512, L1544, and L63,
along with observations of the DNC and HN^13C lines (J=2-1) toward selected
positions. By use of statistical equilibrium calculations based on the LVG
model, the H_2 densities are derived to be (1.4-5.5)*10^5 cm^-3, and the
[DNC]/[HN^13C] ratios are derived to be 1.25-5.44 with a typical uncertainty by
a factor of 2. The observed [DNC]/[HNC] ratios range from 0.02 to 0.09,
assuming the [^12C]/[^13C] ratio of 60. Distributions of DNC and HN^13C are
generally similar to each other, whereas the distribution of H^13CO^+ is more
extended than those of DNC and HN^13C, indicating that they reside in an inner
part of the cores than HCO^+. The [DNC]/[HN^13C] ratio is rather constant
within each core, although a small systematic gradients are observed in TMC-1
and L63. Particularly, no such systematic gradient is found in L1512 and L1544,
where a significant effect of depletion of molecules is reported toward the
central part of the cores. This suggests that the [DNC]/[HNC] ratio would not
be very sensitive to depletion factor, unlike the [DCO^+]/[HCO^+] ratio. On the
other hand, the core to core variation of the [DNC]/[HNC] ratio, which range an
order of magnitude, is more remarkable than the variation within each core.
These results are interpreted qualitatively by a combination of three competing
time-dependent processes; gas-phase deuterium fractionation, depletion of
molecules onto grain surface, and dynamical evolution of a core.Comment: 22 pages, 8 EPS figures, aasLaTex 5.0, accepted to The Astrophysical
Journa