We show that the atmospheric and magnetic height variations are coupled in
general MHS equilibria with gravity when isolated thin non-force-free flux
tubes are present. In gas-dominated environments, as in stellar photospheres,
flux tubes must expand rapidly with height to maintain pressure balance with
the cool surroundings. But in magnetically dominated environments, as in
stellar coronae, the large-scale background magnetic field determines the
average spreading of embedded flux tubes, and rigidly held flux tubes {\it
require} a specific surrounding atmosphere with a unique temperature profile
for equilibrium. The solar static equilibrium atmosphere exhibits correct
transition-region properties and the accepted base coronal temperature for the
sun's main magnetic spherical harmonic. Steady flows contribute to the overall
pressure, so equilibria with accelerated wind outflows are possible as well.
Flux tubes reflect a mathematical degeneracy in the form of non-force-free
fields, which leads to coupling in general equilibrium conditions. The
equilibrium state characterizes the system average in usual circumstances and
dynamics tend to maintain the MHS atmosphere. Outflows are produced everywhere
external to rigidly held flux tubes that refill a depleted or cool atmosphere
to the equilibrium gas profile, heating the gas compressively.Comment: 12 pages, 5 figures, accepted by A&