We present the kinematic properties of a tidally disrupted dwarf galaxy in
the Milky Way, based on the hypothesis that its central part once contained the
most massive Galactic globular cluster, omega Cen. Dynamical evolution of a
self-gravitating progenitor galaxy that follows the present-day and likely past
orbits of omega Cen is calculated numerically and the kinematic nature of their
tidal debris is analyzed, combined with randomly generated stars comprising
spheroidal halo and flat disk components. We show that the retrograde rotation
of the debris stars at ∼−100 km/s accords with a recently discovered,
large radial velocity stream at ∼300 km/s towards the Galactic longitude
of ∼270∘. These stars also contribute, only in part, to a reported
retrograde motion of the outer halo at the North Galactic Pole. The prospects
for future debris searches and the implications for the early evolution of the
Galaxy are briefly presented.Comment: 14 pages, 3 figures, accepted for publication in ApJ Letter