Abstract

We study the distribution of the star formation rate and metallicity of damped Lyman-alpha absorbers using cosmological SPH simulations of the Lambda cold dark matter model in the redshift range z=0-4.5. Our approach includes a phenomenological model of galactic wind. We find that there is a positive correlation between the projected stellar mass density and the neutral hydrogen column density (NHI) of DLAs for high NHI systems, and that there is a good correspondence in the spatial distribution of stars and DLAs in the simulations. The evolution of typical star-to-gas mass ratios in DLAs can be characterised by an increase from about 2 at z=4.5 to 3 at z=3, to 10 at z=1, and finally to 20 at z=0. We also find that the projected SFR density in DLAs follows the Kennicutt law well at all redshifts, and the simulated values are consistent with the recent observational estimates of this quantity by Wolfe et al. (2003a,b). The rate of evolution in the mean metallicity of simulated DLAs as a function of redshift is mild, and is consistent with the rate estimated from observations. The predicted metallicity of DLAs is generally sub-solar in our simulations, and there is a significant scatter in the distribution of DLA metallicity for a given NHI. However, we find that the median metallicity of simulated DLAs is close to that of Lyman-break galaxies, which is higher than the values typically observed for DLAs by nearly an order of magnitude. This discrepancy with observations could be due to an inadequate treatment of SN feedback in our current simulations, perhaps indicating that metals are not expelled efficiently enough from DLAs by outflows. Alternatively, the current observations might be missing the majority of the high metallicity DLAs due to selection effects. (abridged)Comment: 18 pages, 15 figures. Accepted to MNRAS. More visual presentations and the version with high resolution figures are available at http://cfa-www.harvard.edu/~knagamine/DLA-pics

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019