Abstract

The safe operation of complex socio-technical systems including NPPs (Nuclear Power Plants) is a determinant for ensuring their sustainability. From this concern, it should be emphasized that a large portion of safety significant events were directly and/or indirectly caused by human errors. This means that the role of an HRA (Human Reliability Analysis) is critical because one of its applications is to systematically distinguish error-prone tasks triggering safety significant events. To this end, it is very important for HRA practitioners to access diverse HRA data which are helpful for understanding how and why human errors have occurred. In this study, a novel approach is suggested based on the Safety-II concept, which allows us to collect HRA data by considering failure and success cases in parallel. In addition, since huge amount of information can be gathered if the failure and success cases are simultaneously involved, a big data analysis technique called the CART (Classification And Regression Tree) is applied to deal with this problem. As a result, it seems that the novel approach proposed by combining the Safety-II concept with the CART technique is useful because HRA practitioners are able to get HRA data with respect to diverse task contexts

    Similar works

    Available Versions

    Last time updated on 22/10/2020