We present spatially resolved spectroscopy of the supernova remnant (SNR)
G292.0+1.8 with the Chandra X-ray observatory. This SNR contains the 135 ms
pulsar, J1124-5916. We apply non-equilibrium ionization (NEI) models to the
data. By comparing the derived abundances with those predicted from
nucleosynthesis models, we estimate a progenitor mass of 30-40 solar masses. We
also derive the intrinsic parameters of the supernova explosion such as its
energy, the age of the SNR, the blast wave velocity, and the swept-up mass. In
the Sedov interpretation, our estimated SNR age of 2,600 years is close to the
pulsar's characteristic age of 2,900 years. This confirms the pulsar/SNR
association and relaxes the need for the pulsar to have a non-canonical value
for the braking index, a large period at birth or a large transverse velocity.
We discuss the properties of the pulsar wind nebula (PWN) in the light of the
Kennel and Coroniti model and estimate the pulsar wind magnetization parameter.
We also report the first evidence for steepening of the power law spectral
index with increasing radius from the pulsar.Comment: 5 pages, 3 figures. To appear in ApJL, Feb 1 2003 (submitted Oct 9
2002, accepted Dec 19 2002