We used the Effelsberg 100m and IRAM 30m telescopes to observe vibrationally
excited cyanoacetylene (HCCCN) in several rotational transitions toward the
proto-planetary nebula CRL618. Lines from 9 different vibrationally excited
states with energies ranging up to 1600 K above ground were detected. The lines
show P Cygni profiles indicating that the HCCCN emission originates from an
expanding and accelerating molecular envelope. The HCCCN rotational temperature
varies with velocity, peaks at 520 K, 3 km/s blue-shifted from the systemic
velocity and decreases with higher blueshift of the gas. The column density of
the absorbing HCCCN is 3-6 x 1E17 cm^2. We modeled spectra based on spherical
models of the expanding envelope which provide an excellent fit to the
observations, and discuss the implications of the models. Additionally, lines
from 13C substituted cyanoacetylene were observed. They can be used to
constrain the 12C/13C ratio in this source to 10+-2.Comment: 27 pages, 9 figures, to appear in Ap