The statistical analysis of spatially referenced information has been acknowledged as an important component of geographical data processing. With the arrival of GIS there has been a need to devise statistical methods that are compatible with, and relevant to, GIS-based methodologies. Here an algorithm is presented which estimates a “risk surface” from a set of point-referenced events. Such a surface may be viewed as an object embedded in three-dimensional space, or as a contour map. In addition to this view, it is possible to incorporate these surfaces into a broader based GIS framework, allowing the mapping of these patterns in conjunction with other data, overlay analysis, and spatial query. The technique is adaptive, in the sense that parameters which control the surface estimation are adjusted over geographic space, allowing for local variations in point pattern characteristics. The paper is concluded with an example based on probabilistic mapping using data taken from Californian Redwood seedling data