This is the first of a series of papers aimed at developing and interpreting
simulations of protoplanets interacting with turbulent accretion discs. Here we
study the disc models prior to the introduction of a protoplanet.We study
models in which a Keplerian domain is unstable to the magnetorotational
instability (MRI). Various models with B-fields having zero net flux are
considered.We relate the properties of the models to classical viscous disc
theory.All models attain a turbulent state with volume averaged stress
parameter alpha ~ 0.005. At any particular time the vertically and azimuthally
averaged value exhibited large fluctuations in radius. Time averaging over
periods exceeding 3 orbital periods at the outer boundary of the disc resulted
in a smoother quantity with radial variations within a factor of two or so. The
vertically and azimuthally averaged radial velocity showed much larger spatial
and temporal fluctuations, requiring additional time averaging for 7-8 orbital
periods at the outer boundary to limit them. Comparison with the value derived
from the averaged stress using viscous disc theory yielded schematic agreement
for feasible averaging times but with some indication that the effects of
residual fluctuations remained. The behaviour described above must be borne in
mind when considering laminar disc simulations with anomalous Navier--Stokes
viscosity. This is because the operation of a viscosity as in classical viscous
disc theory with anomalous viscosity coefficient cannot apply to a turbulent
disc undergoing rapid changes due to external perturbation. The classical
theory can only be used to describe the time averaged behaviour of the parts of
the disc that are in a statistically steady condition for long enough for
appropriate averaging to be carried out.Comment: 10 pages, 23 figures, accepted for publication in MNRAS. A gzipped
postscript version including high resolution figures is available at
http://www.maths.qmul.ac.uk/~rp