Low pressure chemical vapor deposition of silicon oxynitride films using tetraethylorthosilicate, dichlorosilane and ammonia mixtures

Abstract

This work describes the thermodynamic simulation and the experimental investigation of the chemical vapor deposition of silicon oxide and silicon oxynitride films starting from tetra-ethyl-orthosilicate (TEOS), dichlorosilane (DCS) and ammonia mixtures. The simulation reveals that the co-deposition of silicon oxynitride - silicon dioxide films is possible at 710° C and 300 mTorr if the DCS/TEOS ratio is greater than one. If the DCS/TEOS ratio is less than one, the deposited films are exclusively composed of silicon dioxide. These predictions were confirmed in corresponding experiments by using Fourier Transform Infrared spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS) for the characterization of the obtained films

    Similar works

    Full text

    thumbnail-image