A Study On The Application Of Bio-inspired Algorithms To The Problem Of Direction Of Arrival Estimation [um Estudo Da Aplicação De Algoritmos Bio-inspirados Ao Problema De Estimação De Direção De Chegada]

Abstract

The classical solution to the problem of estimating the direction of arrival (DOA) of plane waves impinging on a sensor array is based on the application of the maximum likelihood method. This approach leads to the problem of optimizing a cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-noise ratio (SNR). The methods proposed in the literature to solve this problem fail for a wide set of SNR values. This work presents the results obtained from a study on the application of natural computing algorithms to the DOA estimation problem. Computational simulations show that four of the analyzed algorithms find the global optimum for a broad range of SNR values with computational efforts lower than that associated with an exaustive search.204609626Ada, G.L., Nossal, G.J.V., The clonal selection theory (1987) Scientific American, pp. 50-57Attux, R.R.F., Loiola, M.B., Suyama, R., De Castro, L.N., Von Zuben, F.J., Romano, J.M.T., Blind search for optimal wiener equalizers using an artificial immune network model (2003) EURASIP Journal of Applied Signal Processing, 2003 (6), pp. 740-747Bäck, T., Fogel, D., Michalewicz, Z., (1997) Handbook of Evolutionary Computation, , Institute of Physics Publishing and Oxford University PressCioppa, A.D., Stefano, C.D., Marcelli, A., On the role of population size and niche radius in fitness sharing (2004) IEEE Transactions on Evolutionary Computation, 8 (6), pp. 580-592Coelho, L.S., Mariani, V.C., Sistema híbrido neuroevolutivo aplicado ao controle de um processo multivariável (2006) SBA Controle & Automação, 17, pp. 32-48Darwen, P., Yao, X., A dilemma for fitness sharing with a scaling function (1995) Evolutionary Computation, Proceedings of IEEE International Conference on, pp. 166-171. , Piscataway, NJDe Castro, L.N., (2006) Fundamentals of Natural Computing: Basic Concepts, Algorithms and Applications, , Chapman & Hall/CRCDe Castro, L.N., Timmis, J., An artificial immune network for multimodal function optimization (2002) IEEE International Conference on Evolutionary Computation, 1, pp. 674-699De Castro, L.N., Von Zuben, F.J., Learning and optimization using the clonal selection principle (2002) IEEE Transactions on Evolutionary Computation, 6 (3), pp. 239-251Forster, P., Larzabal, P., Boyer, E., Threshold performance analysis of maximum likelihood DOA estimation (2004) Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 52 (11), pp. 3183-3191Gershman, A., Stoica, P., MODE with extra-roots (MODEX): A new DOA estimation algorithm with an improved threshold performance (1999) IEEE International Conference on Acoustics, Speech, and Signal Processing, 5, pp. 2833-2836Goldberg, D.E., (1989) Genetic Algorithms in Search, Optimization and Machine Learning, , Addison-WesleyGoldberg, D.E., Richardson, J., Genetic algorithms with sharing for multimodal function optimization (1987) 2nd Int. Conf. Genetic Algorithms, pp. 41-49Haykin, S., (1985) Array Signal Processing, , Prentice Hall, Englewood Cliffs, NJHolland, J., (1992) Adaptation in Natural and Artificial Systems, , 2nd edn, The MIT PressJerne, N.K., Towards a network theory of the immune system (1974) Ann. Immunol. (Inst. Pasteur), pp. 373-389Kay, S.M., (1993) Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, , Prentice Hall Signal Processing Series, Englewood Cliffs, NJKennedy, J., The particle swarm: Social adaptation of knowledge (1997) IEEE International Conference on Evolutionary Computation, pp. 303-308Kennedy, J., Eberhart, R., Particle swarm optimization (1995) IEEE International Conference on Neural Networks, 4, pp. 1942-1948Krim, H., Viberg, M., Two decades of array signal processing research: The parametric approach (1996) IEEE Signal Processing Magazine, 13 (4), pp. 67-94Krummenauer, R., (2007) Filtragem ótima na estimação de direção de chegada de ondas planas usando arranjo de sensores, , Master's thesis, School of Electrical and Computer Engineering - UNICAMP, Campinas-SP-BrazilLopes, A., Bonatti, I.S., Peres, P.L.D., Alves, C.A., Improving the MODEX algorithm for direction estimation (2003) Signal Processing, 83 (9), pp. 2047-2051Mahfoud, S.W., (1995) Niching Methods for Genetic Algorithms, , PhD thesis, University of Illinois at Urbana-ChampaignManikas, A., (2004) Differential Geometry in Array Processing, , Imperial College PressPétrowski, A., A clearing procedure as a niching method for genetic algorithms (1996) Evolutionary Computation, Proceedings of IEEE International Conference on, pp. 798-803Rife, D., Boorstyn, R., Single tone parameter estimation from discrete-time observations (1974) IEEE Transactions on Information Theory, 20 (5), pp. 591-598Sareni, B., Krahenbuhl, L., Fitness sharing and niching methods revisited (1998) IEEE Transactions on Evolutionary Computation, 2, pp. 97-106Silva, V.V.R., Khatib, W., Fleming, P.J., Control system for a gas turbine engine using evolutionary computing for multidisciplinary optimization (2007) SBA Controle & Automação, 18 (4), pp. 471-478Stoica, P., Nehorai, A., Performance study of conditional and unconditional direction-of-arrival estimation (1990) IEEE Transactions on Acoustics, Speech, and Signal Processing, 38 (10), pp. 1783-1795Stoica, P., Sharman, K.C., Novel eigenanalysis method for direction estimation (1990) IEE Proceedings part F (Radar and Signal Processing), 137 (1), pp. 19-26Van Trees, H.L., (2001) Optimum Array Processing. Part IV of Detection, Estimation and Modulation Theory, , John Wiley and Sons, New York, US

    Similar works