Comparative Growth Of Trichoderma Strains In Different Nutritional Sources, Using Bioscreen C Automated System [crescimento De Linhagens De Trichoderma Em Diferentes Fontes Nutricionais, Empregando O Sistema Automatizado Bioscreen C]

Abstract

Trichoderma is one of the fungi genera that produce important metabolites for industry. The growth of these organisms is a consequence of the nutritional sources used as also of the physical conditions employed to cultivate them. In this work, the automated Bioscreen C system was used to evaluate the influence of different nutritional sources on the growth of Trichoderma strains (T. hamatum, T. harzianum, T. viride, and T. longibrachiatum) isolated from the soil in the Juréia-Itatins Ecological Station (JIES), São Paulo State -Brazil. The cultures were grown in liquid culture media containing different carbon- (2%; w/v) and nitrogen (1%; w/v) sources at 28°C, pH 6.5, and agitated at 150 rpm for 72 h. The results showed, as expected, that glucose is superior to sucrose as a growth-stimulating carbon source in the Trichoderma strains studied, while yeast extract and tryptone were good growth-stimulating nitrogen sources in the cultivation of T. hamatum and T. harzianum.402404410Alvarez-Barrientos, A., Arroyo, J., Canton, R., Nombela, C., Sanchez-Pérez, M., Applications of flow cytometry to clinical microbiology (2000) Clin. Microbiol. Rev., 13, pp. 167-195Antal, Z., Manczinger, L., Szakacs, G., Tengerdy, R.P., Ferenczy, L., Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species (2000) Mycol. Res., 104, pp. 545-549Antunes, M.F.R., Ninomiya, A., Schoenlein-Crusius, I.H., Efeitos da queimada sobre a micota de solo na Mata Atlântica na Reserva Biológica do Alto da Serra de Paranapiacaba, SP (1994) Hoehnea., 20 (1), pp. 1-8Apsmo, S.I., Horn, S.J., Eijsink, G.H., Hydrolysates from Atlantic cód (Gadus morhua L.) viscera as components of microbial growth media (2005) Process Biochem., 40, pp. 3714-3722Ayres, M., Ayres, D.L., Santos, A.A.S., Biostat 4.0 - Aplicações estatísticas nas áreas de Ciências Biomédicas (2005) Sociedade Mamirauá, , Belém, PABlack, R.L.B., Dix, N.J., Utilization of ferulic acid by microfungi from litter and soil (1976) Transations of the British Mycologial Society, 66, pp. 305-311Caçais, A.O.G., Silveira, F., Filho, E.X.F., Production of xylandegrading enzymes by a Trichoderma harzianum strain Braz (2001) J. Microbiol., 32 (2), pp. 141-143Corabi-Adell, C., (2004) Biodiversidade do gênero Trichoderma (Hypocreales - Fungi) mediante técnicas moleculares e análise ecofisiográfica, , Rio Claro - Brazil (Dr. Tesis. Instituto de Biociências, Unesp)Delgado-Jarana, J., Pintor-Toro, J.A., Benítez, T., Overproduction of β-1,6-glucanase in Trichoderma harzianum is controlled by extracellular acid proteases and pH (2000) Acta Biochim. Biophys., 1481, pp. 289-296Dennis, C., Webster, J., Antagonistic properties of species-groups of Trichoderma. 1. Production of non-volatile antibiotics (1971) Transactions of the British Mycologial Society, 57, pp. 25-39Goller, S.P., Schoisswohl, D., Baron, M., Parriche, M., Kubicek, C.P., Role of endoproteolytic dibasic proprotein processing in maturation of secretory in Trichoderma reesei (1998) Appl. Environ. Microbiol., 64 (9), pp. 3202-3208Guiserix, J., Ramdane, M., Finielz, P., Michault, A., Rajaonarivelo, P., Trichoderma harzianum peritonitis in peritoneal dialysis (1996) Nephron, 74, pp. 473-474Haltrich, D., Production of fungal xylanases (1996) Bioresour. Technol., 58 (2), pp. 137-161Hawksworth, D.L., Kirsop, B.E., (1988) Living Resources for Biotechnology: Filamentous Fungi, p. 209. , Cambridge University Press, Cambridge, UKJatinder, K., Chadha, B.S., Saini, H.S., Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC3922 under solid-state fermentation (2006) World J. Microbiol. Biotechnol., 22, pp. 15-22Kredics, L., Manczinger, Z., Antal, Z., Pénzes, Z., Szekeres, A., Kevei, F., Nagy, E., In vitro water activity and pH dependence of micelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potencial (2004) J. Appl. Microbiol., 96, pp. 491-498Lisowska, K., Palexz, B., Dlugonski, J., Microcalorimetry as a possible tool for phenanthrene toxicity evaluation to eukaryotic cells (2004) Thermochim. Acta, 411, pp. 181-186Loeppky, C.B., Sprouse, R.F., Carlson, J.V., Everett, E.D., Trichoderma viride peritonitis (1993) South. Med. J., 76, pp. 798-799Mandels, M., Microbial sources of cellulose (1975) Cellulose as a Chemical and Energy Resource, pp. 81-105. , In: Wilke, C. R. (eds.), Wiley, New YorkMarois, J.J., Mitchell, D.J., Sonoda, R.M., Biological control of Fusarium crown rot of tomato under field conditions (1981) Phytopatology, 71, pp. 1257-1260Mattila, T., O'Boyle, D., Frost, A.J., The growth of compact and diffuse variants of Staphylococcus aureus in bovine mastitic and normal whey (1988) Microbiol. Immunol., pp. 667-673Pitt, J.I., Hocking, D.A., Glen, D., An improved medium for the detection of Aspergillus flavus and A. parasiticus (1983) J. Appl. Bact., 54, pp. 109-114Randhawa, H.S., Kowshik, T., Sinha, T.P., Sandhu, R.S., Chowdhary, A., Peptone glucose fluconazole agar, a selective medium for rapid and enhanced isolation of Aspergillus fumigatus from aqueous suspensions and sputum seeded with Candida albicans (2005) Curr. Sci., 88 (3), pp. 449-454Ridout, C.J., Smith-Coley, J.R., Lynch, J.M., Fractation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum (1988) Enzyme. Microb. Technol., 10, pp. 180-187Rodriguez-Kabana, R., Kelley, W.D., Curl, E.A., Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii n soil (1978) Can. J. Microbiol., 24, pp. 487-490Ruegger, M.S., Tauk-Tornisielo, S.M., Atividade da celulase de Fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil (2004) Rev. Bras. Bot., 27 (2), pp. 205-211Shimizu, S., Kawashima, H., Shinmen, Y., Akimoto, K., Yamada, H., Production of eicosapentaenoic acid by Mortierella fungi (1988) J. Am. Oil Chem. Soc., 65 (9), pp. 1455-1459Sivasithamparam, K., Macnish, G.C., Fang, C.S., Parker, C.A., Microflora of soil and wheat rhizosfere in a field following fumigation (1987) Aust. J. Soil Res., 25 (4), pp. 491-498Smith, D., Onions, A.H.S., (1983) The Preservation and Maintenance of Living Fungi, p. 51. , Norwick: Page BrosTauk-Tornisielo, S.M., Vieira, J.M., Govone, J.S., Use of Bioscreen C for growth of Mucor hiemalis in different carbon and nitrogen sources (2007) Braz. J. Microbiol., 38, pp. 113-117Tauk-Tornisielo, S.M., Garlipp, A., Ruegger, M.J.S., Attili, D.S., Malagutti, E.N., Soilborne filamentous fungi in Brazil (2005) J. Basic Microbiol., 45, pp. 72-82Tauk-Tornisielo, S.M., Vieira, J.M., Govone, J.S., Use of Bioscreen C for Growth of Mucor Hiemalis in different Carbon and Nitrogen sources (2007) Braz. J. Microbiol., 38, pp. 113-117Triveni, R., Shamala, T.R., Clarification of xanthan gum with extracellular enzymes secreted by Trichoderma koningii (1999) Process Biochem, 34, pp. 49-53Tvrzova, L., Prokop, Z., Navratilova, J., Mullerova, R., Neca, J., Development of a microtiter plate-based method for determination of degradation profile of nitrophenolic compounds (2006) J. Microbiol. Methods, 65, pp. 551-556Wiater, A., Szczodrak, J., Pleszczyn'Ska, M., Próchniak, K., Production and use of Mutanase from Trichoderma harzianum for effective degradation of Streptococcal Mutans (2005) Braz. J. Microbiol., 3

    Similar works