High Susceptibility Of Activated Lymphocytes To Oxidative Stress-induced Cell Death

Abstract

The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to iert-butyl hydroperoxide (t-BOOH)-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhibitor cyclosporin A, but not the calcineurin inhibitor FK-506, render control and activated lymphocytes equally resistant to the toxic effects of t-BOOH. Incubation of activated lymphocytes in the presence of t-BOOH resulted in a cyclosporin A-sensitive decrease in mitochondrial membrane potential. These results indicate that the higher cytosolic Ca 2+ level in activated lymphocytes increases their susceptibility to oxidative stress-induced cell death in a mechanism involving the participation of mitochondrial permeability transition.801137148ABE, K., SAITO, H., Characterization of t-butyl hydroperoxide toxicity in cultured rat cortical neurones and astrocytes (1998) Pharmacol Toxicol, 83, pp. 40-46ARNOLD, R., BRENNER, D., BECKER, M., FREY, C.R., KRAMMER, P.H., How T lymphocytes switch between life and death (2006) Eur J Immunol, 36, pp. 1654-1658BARTESAGHI, S., TRUJILLO, M., DENICOLA, A., FOLKES, L., WARDMAN, P., RADI, R., Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals (2004) Free Radic Biol Med, 36, pp. 471-483BARTOLI, G.M., PICCIONI, E., AGOSTARA, G., CALVIELLO, G., PALOZZA, P., Different mechanisms of tert-butyl hydroperoxide-induced lethal injury in normal and tumor thymocytes (1994) Arch Biochem Biophys, 312, pp. 81-87BERNARDES, C.F., PEREIRA, DA SILVA, L., VERCESI, A.E., t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP (1986) Biochim Biophys Acta, 850, pp. 41-48BOYUM, A., Isolation of lymphocytes, granulocytes and macrophages (1976) Scand J Immunol, (SUPPL. 5), pp. 9-15BRUMATTI, G., WEINLICH, R., CHEHAB, C.F., YON, M., AMARANTE-MENDES, G.P., Comparison of the anti-apoptotic effects of Bcr-Abl, Bcl-2 and Bcl-x(L) following diverse apoptogenic stimuli (2003) FEBS Lett, 541, pp. 57-63BUTTKE, T.M., SANDSTROM, P.A., Redox regulation of programmed cell death in lymphocytes (1995) Free Radic Res, 22, pp. 389-397CAMPOS, C.B., DEGASPERI, G.R., PACIFICO, D.S., ALBERICI, L.C., CARREIRA, R.S., GUIMARÃES, F., CASTILHO, R.F., VERCESI, A.E., Ibuprofen-induced Walker 256 tumor cell death: Cytochrome c release from functional mitochondria and enhancement by calcineurin inhibition (2004) Biochem Pharmacol, 68, pp. 2197-2206CASTILHO, R.F., KOWALTOWSKI, A.J., MEINICKE, A.R., BECHARA, E.J., VERCESI, A.E., Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria (1995) Free Radic Biol Med, 18, pp. 479-486CONKLIN, K.A., Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness (2004) Integr Cancer Ther, 3, pp. 294-300CROMPTON, M., ELLINGER, H., COSTI, A., Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress (1988) Biochem J, 255, pp. 357-360CROMPTON, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem J, 341, pp. 233-249DALY, M.J., YOUNG, R.J., BRITNELL, S.L., NAYLER, W.G., The role of calcium in the toxic effects of tert-butyl hydroperoxide on adult rat cardiac myocytes (1991) J Mol Cell Cardiol, 23, pp. 1303-1312DEGASPERI, G.R., VELHO, J.A., ZECCHIN, K.G., SOUZA, C.T., VELLOSO, L.A., BORECKÝ, J., CASTILHO, R.F., VERCESI, A.E., Role of mitochondria in the immune response to cancer: A central role for Ca 2+ (2006) J Bioenerg Biomembr, 38, pp. 1-10DEGASPERI, G.R., ZECCHIN, K.G., BORECKY, J., CRUZ-HOFLING, M.A., CASTILHO, R.F., VELLOSO, L.A., GUIMARÃES, F., VERCESI, A.E., Verapamil-sensitive Ca2+ channel regulation of Th1-type proliferation of splenic lymphocytes induced by Walker 256 tumor development in rats (2006) Eur J Pharmacol, 549, pp. 179-184DOROSHOW, J.H., Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase (1983) Cancer Res, 43, pp. 4543-4551FESKE, S., Calcium signalling in lymphocyte activation and disease (2007) Nat Rev Immunol, 7, pp. 690-702FRIBERG, H., FERRAND-DRAKE, M., BENGTSSON, F., HALESTRAP, A.P., WIELOCH, T., Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death (1998) JNeurosci, 18, pp. 5151-5159GALAT, A., Peptidylprolyl cis/trans isomerases (immunophilins): Biological diversity - targets - functions (2003) Curr Top Med Chem, 3, pp. 1315-1347GIARDINI, C., LA NASA, G., CONTU, L., GALIMBERTI, M., POLCHI, P., ANGELUCCI, E., BARONCIANI, D., LUCARELLI, G., Desferrioxamine therapy induces clearance of iron deposits after bone marrow transplantation for thalassemia: Case report (1993) Bone Marrow Transplant, (SUPPL. 1), pp. 108-110GOLDSTEIN, S., CZAPSKI, G., Transition metal ions and oxygen radicals (1990) Int Rev Exp Pathol, 31, pp. 133-164GREEN, D.R., KROEMER, G., The pathophysiology of mitochondrial cell death (2004) Science, 305, pp. 626-629GREEN, D.R., REED, J.C., Mitochondria and apoptosis (1998) Science, 281, pp. 1309-1312GRIFFITHS, E.J., HALESTRAP, A.P., Further evidence that cyclosporin A protects mitochondria from calcium overload, by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin (1991) Biochem J, 274, pp. 611-614GROSSMAN, Z., MIN, B., MEIER-S, CHELLERSHEIM, M., PAUL, W.E., Concomitant regulation of T-cell activation and homeostasis (2004) Nat Rev Immunol, 4, pp. 387-395HALLIWELL, B., Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action? (1989) Free Radic Biol Med, 7, pp. 645-651HARTLEY, A., DAVIES, M., RICE- EVANS, C., Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes (1990) FEBS Lett, 264, pp. 145-148HERMISTON, M.L., XU, Z., MAJETI, R., WEISS, A., Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases (2002) J Clin Invest, 109, pp. 9-14HOE, S., ROWLEY, D.A., HALLIWELL, B., Reactions of ferrioxamine and desferrioxamine with the hydroxyl radical (1982) Chem Biol Interact, 41, pp. 75-81JOCELYN, P.C., DICKSON, J., Glutathione and the mitochondrial reduction of hydroperoxides (1980) BiochimBiophys Acta, 590, pp. 1-12KENNEDY, C.H., CHURCH, D.F., WINSTON, G.W., PRYOR, W.A., tert-Butyl hydroperoxide-induced radical production in rat liver mitochondria (1992) Free Radic Biol Med, 12, pp. 381-387KOWALTOWSKI, A.J., CASTILHO, R.F., VERCESI, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15KRAMMER PH, ARNOLD R AND LAVRIK IN. 2007. Life and death in peripheral T cells. Nat Rev Immunol 7: 532-542LEMASTERS, J.J., ET AL., The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy (1998) Biochim Biophys Acta, 1366, pp. 177-196MACKALL, C.L., FLEISHER, T.A., BROWN, M.R., MAGRATH, I.T., SHAD, A.T., HOROWITZ, M.E., WEXLER, L.H., GRESS, R.E., Lymphocyte depletion during treatment with intensive chemotherapy for cancer (1994) Blood, 84, pp. 2221-2228MARTIN, S.J., REUTELINGSPERGER, C.P.M., MCGAHON, A.J., RADER, J., VAN SCHIE, R.C.A.A., LAFACE, D.M., GREEN, D.R., Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overex-pression of Bcl-2 and Abl (1995) J Exp Med, 182, pp. 1-12MATHER, M.W., ROTTENBERG, H., The inhibition of calcium signaling in T lymphocytes from old mice results from enhanced activation of the mitochondrial permeability transition pore (2002) Mech Ageing Dev, 123, pp. 707-724NIEMINEN, A.L., BYRNE, A.M., HERMAN, B., LEMASTERS, J.J., Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species (1997) Am J Physiol, 272, pp. C1286-C1294QUINTANA, A., GRIESEMER, D., SCHWARZ, E.C., HOTH, M., Calcium-dependent activation of T-lymphocytes (2005) Pflugers Arch, 450, pp. 1-12ROTTENBERG, H., WU, S., Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells (1998) Biochim Biophys Acta, 1404, pp. 393-404ROY, C.R., Immunology: Professional secrets (2003) Nature, 425, pp. 351-352STAHNKE, K., FULDA, S., FRIESEN, C., STRAUSS, G., DEBATIN, K.M., Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy (2001) Blood, 98, pp. 3066-3073WALLACE, K.B., Doxorubicin-induced cardiac mitochondrionopathy (2003) Pharmacol Toxicol, 93, pp. 105-115WILLIAMS, M.S., KWON, J., T cell receptor stimulation, reactive oxygen species, and cell signaling (2004) Free Radic Biol Med, 37, pp. 1144-1151ZORATTI, M., SZABO, I., The mitochondrial permeability transition (1995) Biochim Biophys Acta, 1241, pp. 139-17

    Similar works