Quantitative Analysis Of Race-specific Resistance To Colletotrichum Lindemuthianum In Common Bean

Abstract

Molecular genetic maps continue to play a major role in breeding of crop species. The common bean genetic map of the recombinant inbred line population IAC-UNA × CAL 143 (UC) has been used to detect loci controlling important agronomic traits in common bean. In the current study, new microsatellite markers were added to the UC map and the linkage analysis was refined using current genomic resources of common bean, in order to identify quantitative resistance loci (QRL) associated with different races of the anthracnose pathogen. A single race inoculation was conducted in greenhouse using four plants per plot. Both race-specific and joint-adjusted disease severity means, obtained from linear-mixed model, were used to perform multiple interval mapping (MIM) and multi-trait MIM (MTMIM). In total, 13 and 11 QRL were identified by MIM and MTMIM analyses, respectively; with nine being observed in both analyses. ANT02.1UC and ANT07.1UC showed major effects on resistance both for MIM and MTMIM. Common major QRL for resistance to the three anthracnose races were expected, since high genetic pairwise-correlation was observed between the race-specific and joint-adjusted disease severity means. Therewith, both ANT02.1 and ANT07.1 can be regarded as valuable targets for marker-assisted selection; and so, putative genes potentially involved in the resistance response were identified in these QRL regions. Minor effect QRL were also observed, showing differential affects either on race-specific or multi-trait analyses and may play a role on durable horizontal resistance. These results contribute to a better understanding of the host-pathogen interaction and to breeding for enhancing resistance to Colletotrichum lindemuthianum in common bean. © 2014 Springer Science+Business Media Dordrecht

    Similar works