Optimization and characterization of ionic liquid based electrolytes for Li-ion batteries

Abstract

U ovoj doktorskoj disertaciji ispitivani su elektroliti na bazi jonskih tečnosti pogodni za primenu u litijum  jonskim baterijama. Fizičko-hemijska svojstva binarnih smeša jonskih tečnosti sa dicijanamidnim i bis(trifluorometilsulfonil)imidnim anjonima i molekulskih rastvarača ispitana su u celom opsegu molskih udela i na različitim temperaturama. Na osnovu izmerenih gustina, viskoznosti i električne provodljivosti izračunati su različiti fizičko hemijski parametri i diskutavne interakcije između komponenata smeša. Ispitana je termička i elektrohemijska stabilnost odabranih elektrolita. Dodatkom litijumove soli u odabrane binarne smeše dobijeni su ternarni sistemi koji su okarakterisani u zavisnoti od koncentracije litijumove soli. Odabrani elektroliti upotrebljeni su za  ispitivanje performansi litijum  jonske ćelije sa anatas TiO2  nanotubularnim elektrodama.Cikličnom voltametrijom i galvanostatskim cikliranjem su ispitane performanse ćelije u toku 150 ciklusa punjenja i pražnjenja. Na osnovu ciklovoltametrijskih merenja izračunati su koeficijenti difuzije i energija aktivacije za difuziju.In this doctoral dissertation, Ion liquid-based electrolytes were tested for use in  lithium-ion batteries. The physicochemical properties of binary mixtures of ionic  liquids with dicyanamide and bis (trifluoromethylsulfonyl) imide anions and  molecular solvents were examined throughout the range of molar proportions and at different temperatures. Based on the measured densities, viscosity and electrical conductivity, various physical chemical parameters and discrete interactions between  the components of the mixture are calculated. Thermal and electrochemical stability of selected electrolytes was examined. By addition of lithium salt to the selected binary mixtures, ternary systems were characterized which were characterized by the concentration of lithium salt. The selected electrolytes were used to test the performance of the lithium-ion cell with anatomic TiO2 nanotubular electrodes. Cyclic voltammetry and galvanostatic cycling tested the cell's performance during the 150 charge and discharge  cycles. Based on cyclotoltametric  measurements, the diffusion coefficients and activation energies for diffusion were calculated

    Similar works