Efficient calculation of formation energies of kink-pairs in BCC crystals

Abstract

Motion of screw dislocations in BCC materials at low temperature is believed to be related to the formation of mobile kinks on the dislocation line. Therefore, the accurate prediction of kink nucleation energies is required to fully describe mobility of screw dislocations in these materials. Studies of fundamental dislocation processes at atomic length scale are numerically and computationally intensive problems. This work studies the calculation of zero-stress formation energies of kink-pair configurations for BCC crystals. Our model for stored energy associated to a dislocation line configuration is based on the theory of discrete dislocations of Ariza and Ortiz. Its value is computed efficiently using an algorithm developed on the NVIDIA Compute Unified Device Architecture (CUDA). Results confirm those obtained using atomistic potentials and first principles calculations, and those based on the continuum theory of dislocations

    Similar works

    Full text

    thumbnail-image

    Available Versions