The X-ray emission from normal elliptical galaxies has two major components:
soft emission from diffuse gas and harder emission from populations of
accreting (low-mass) stellar X-ray binaries (LMXB). If LMXB populations are
tied to the field stellar populations in galaxies, their total X-ray
luminosities should be proportional to the optical luminosities of galaxies.
However, recent ASCA and Chandra X-ray observations show that the global
luminosities of LMXB components in ellipticals exhibit significant scatter at a
given optical luminosity. This scatter may reflect a range of evolutionary
stages among LMXB populations in ellipticals of different ages. If so, the
ratio of the global LMXB X-ray luminosity to the galactic optical luminosity,
L_LMXB/L_opt, may be used to determine when the bulk of stars were formed in
individual ellipticals. To test this, we compare variations in L_LMXB/L_opt for
LMXB populations in ellipticals to optically-derived estimates of stellar ages
in the same galaxies. We find no correlation, implying that L_LMXB/L_opt
variations are not good age indicators for ellipticals. Alternatively, LMXBs
may be formed primarily in globular clusters (through stellar tidal
interactions), rather than in the stellar fields of galaxies. Since elliptical
galaxies exhibit a wide range of globular cluster populations for a given
galaxian luminosity, this may induce a dispersion in the LMXB populations of
ellipticals with similar optical luminosities. Indeed, we find that
L_LMXB/L_opt ratios for LMXB populations are strongly correlated with the
specific globular cluster frequencies in elliptical galaxies. This suggests
that most LMXBs were formed in globular clusters.Comment: 5 pages, emulateapj5 style, 2 embedded EPS figures, to appear in ApJ
Letter